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ABSTRACT

Mechanical properties of blood flow are commonly correlated to a wide range of cardiovascular diseases.
In this work means to describe and characterise the flow field in the free-slip and no-slip domains are
discussed in the context of cerebral aneurysms, reconstructed from in vivo medical imaging. The
approaches rely on a Taylor series expansion of the velocity field to first order terms that leads to a sys-
tem of ODEs, the solution to which locally describes the motion of the flow. On performing the expansion
on the vessel wall using the wall shear stress, the critical points can be identified and the near-wall flow
field parallel to the wall can be concisely described and visualised. Furthermore the near-wall expansion
can be expressed in terms of relative motion, and the near-wall convective transport normal and parallel
to the wall can be accurately derived on the no-slip domain. Together, these approaches give a viable and
robust means to identify and describe fluid mechanic phenomena both qualitatively and quantitatively,
leading to feasible practical use in biomedical applications.

From analysis of steady and unsteady flow simulations in two anatomically accurate cerebral saccular
aneurysm cases, a set of measures can be readily obtained at all time intervals, including the impinge-
ment region, separation lines, convective transport near the wall and vortex core lines or structures,
which have all been related to diseased states. Other fluid mechanic measures are also discussed in order
to give further detail and insight during post-processing, and may play an important role in the growth
and rupture of the aneurysm.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

It is commonly accepted that certain fluid mechanic measures
in arterial haemodynamics are linked to disease formation such
as atheroma and aneurysms, and play a role in vascular remodel-
ling. While the relationship between the flow field and disease is
not fully understood, fluid mechanics parameters on and near the
artery wall, such as wall shear stress (WSS) and derived measures,
residence times and region of flow impingement are among the
most commonly sought correlators to disease. This is often dis-
cussed in relation to mechanotransduction and mass transport. In
this work some physical insight of these parameters is presented
and then related to possible signalling mechanisms that endothe-
lial cells may be endowed with. In this work the flow structures
for two patient-specific saccular cerebral aneurysm, shown in
Fig. 1, are studied at steady-state and unsteady periodic simula-
tions, identifying feasible means to describe and extract relevant
flow measures.

The non-planarity and tortuousity of vessels play a determining
role in the human arterial system, resulting in a strong influence of
the local vessel topology on the flow field [1-6]. An abnormal flow
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field, usually described as complex and disturbed, is often related
to the diseased states. Elevated WSS values have also been associ-
ated with aneurysm formation [7,8], while temporal and spatial
gradients and temporal directional fluctuations [9-13] of WSS
have also been studied in relation to aneurysm initiation and rup-
ture. Vascular remodelling is thought partly as an adaptive re-
sponse to alleviate undesired haemodynamic conditions, such as
high WSS and spatial WSS gradients in aneurysm formation
[8,11], or low and disturbed WSS in anastomosis remodelling and
atherosclerosis [14,15]. Flow structures and their stability within
the cardiac cycle have also been associated to aneurysm rupture
[13,16]. Despite the consensus that the haemodynamic and
mechanical properties in relation to aneurysms play a crucial role,
there is still substantial debate as to the most appropriate mea-
sures to discuss patient healthcare and risks of rupture; further-
more the pathophysiology of cerebral aneurysms includes
considerations of factors such as genetic predisposition and bio-
chemical reactions [17-20].

Aneurysms are often studied from a geometrical standpoint,
since in effect the shape of the aneurysm and the parent artery
act as boundary conditions and will determine the flow field (as
well as the fluid boundary conditions at artificial sections). Among
these studies the curvature of the parent vessel upstream to the
aneurysm has been correlated to aneurysm rupture [21] and often
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Casel Case2

Fig. 1. Top row: region of segmented cerebral vasculature and region of interest
containing the aneurysm (flow is from bottom to top) for two patient data sets.
Bottom row: detail of region of interest used as computational domain (flow is from
left to right).

the shape of the aneurysm is the most used criterion for clinical
decisions [22,23].

In this work methods based on existing theory of critical points
[24-26] are used to characterise concisely both the free-slip (fluid
away from the wall) and no-slip (fluid on or near the wall) do-
mains. These methods are shown to give a description of the flow
field in a simple approach, both to implement and also as tools to
analyse the data. These methods are meant to complement and as-
sist the current trend of studies of diseases of human physiology
related to haemodynamics.

The outline of the paper is as follows: a brief overview of the pa-
tient data sets and the approach of reconstructing a computational
domain from medical images is given in Section 2. The parameters
for the numerical simulations are detailed in Section 3. In Section 4
the outline of the theory on the Taylor series expansions of the
velocity, the wall shear stress and the relative position is pre-
sented, and related to critical point theory. The results are pre-
sented in Section 5 and finally the conclusions are drawn in
Section 6.

2. Patient data sets

In this work two patient-specific geometries were recon-
structed from medical images obtained in vivo from rotational
computed tomography angiography (CTA), provided as volumetric
data with voxel resolution of ~0.4 mm on a 5123 grid. The recon-
struction procedure of the 3D geometry surface for numerical sim-
ulations consists in image segmentation and surface extraction,
followed by surface smoothing and identifying the region of inter-
est, and finally meshing.

A constant threshold value for segmenting the image data is ini-
tially used, followed by a manual refinement to exclude the most
significant noise and artefacts. The contrast of object to back-
ground using rotational CTA images is sufficiently large to allow
this approach to be reliable. A marching tetrahedra algorithm, with
linear interpolation of the greyscale, is used directly on the voxel
data to extract the 3D surface to yield an initial triangulation. This
is admissible due to the voxel fine resolution and uniform size. To-
gether, the approach described so far is relatively fast and inexpen-

sive, with little effective user intervention. Several other
possibilities exist to reduce the user intervention and adopt more
automatic techniques, and the most popular of these is use of
deformable models [27,28], however each method has its limita-
tions and at times necessitates corrective user intervention or care-
ful coefficient choice. Ultimately there is a uncertainty in the
segmented geometry that is limited by the acquisition modality,
resolution, contrast and noise.

The resulting virtual model of the vasculature is then prepared
for the numerical simulations by identifying the regions of interest
and removing secondary branches that are located far from the
aneurysm. Surface smoothing is then employed to reduce small
surface perturbations due to medical imaging noise and resolution
in combination with the segmentation approach. Smoothing is per-
formed using the bi-Laplacian method, an iterative method which
resembles an explicit time marching scheme, and a final small
inflation along the local normal by a constant distance in order
to minimise the volume alteration and surface distortion [29].
The intensity of the smoothing, hence the number of iterations per-
formed, is chosen to reduce the surface curvature variation with
the constraint that the resulting surface definition does not deviate
from the original more than half the voxel size, which is the basic
unit size of uncertainty in interpreting the medical images.

Fig. 1 shows the cerebral arterial geometry surfaces, with sev-
eral secondary branches and the saccular aneurysms, as well as
the resulting region of interest that includes the aneurysm and is
used in the numerical simulations. In the models used as computa-
tional domain, any secondary branches far from the aneurysm
were excluded and the parent artery is truncated with sections lo-
cally perpendicular to the axis of the vessel and in a region where
the vessel is relatively straight. The secondary branches are re-
moved to reduce computational cost, and since far from the aneu-
rysm they have a reduced effect on the flow field in the sac, with
the error incurred comparable to other modelling uncertainties
[27]. Furthermore a long upstream section was chosen in order
to reduce effects of inflow boundary condition choice on the result-
ing computed solution.

3. Parameters of the computational haemodynamics

The computations were performed using OpenFOAM software
package [30] to solve the Navier-Stokes equations, which relies
on the finite volume method. The simulations were run for stea-
dy-state for the two patient cases and unsteady for Case 1. These
simulations were chosen in order to be able to both emphasise
the use of the proposed methods clearly with steady-state, as well
as demonstrate the relevance in more physiological scenario with
the unsteady computations. The schemes used are the well known
SIMPLE method for the steady-state and PISO for the unsteady
computations. Convergence criterion was set to 107% on the
residual.

The vessel wall was assumed rigid and the fluid boundary con-
ditions were chosen to be no-slip for the vessel wall, a zero pres-
sure gradient was prescribed at the outflows (including for the
secondary vessel for Case 2) and the inflow flow rate was obtained
using the relation Q = k - A" (where k =48.21 and n = 1.84) [31]. The
cross-sectional areas of both cases was found to be almost identi-
cal, resulting in a Q=4 x 10°°m®s~!, hence Re ~ 260. The fluid is
modelled as Newtonian and incompressible, and the kinematic vis-
cosity was chosen to be v=3.883 x 10°°m?s~! and the density
p=1030 kg/m~3. The unsteady waveform was scaled from that
provided in [13] and the time step was chosen to be 0.0085 s,
hence 100 steps for each heartbeat (0.85 s), and a total of fifteen
heartbeats were simulated to avoid transients due to the initial
conditions (zero velocity and pressure).
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The mesh consists in unstructured tetrahedral elements, cre-
ated using the Gmsh software package [32]. Mesh convergence
studies were carried out on Case 1, using a 0.8 M and 4.6 M ele-
ment meshes for the steady-state computations, based on differ-
ences in the interpolated velocity field. The unsteady simulations
were performed with the coarser mesh size. The mesh for Case 2
comprised of 2.6 M elements, since the length of the computa-
tional domain is less than for Case 1.

4. Methods for analysing the flow field

In this section methods for characterising the flow field are pre-
sented, based on truncated Taylor expansions of velocity, wall shear
stress or relative position. The free-slip and no-slip regions of the
flow field are considered individually. The free-slip domain descrip-
tion of the fluid mechanics is based on the velocity gradient tensor,
while for the no-slip region the wall shear stress gradient tensor is
used and finally the local convective transport and momentum
transfer is described in terms of the wall shear stress gradients.

4.1. Invariants of the velocity gradient tensor

Vessel non-planarity and vessel curvature have long been
acknowledged to play an important role in physiological flows
[1] and known to form vortical structures [33]. These tend to be
the dominant structures in physiological flows, which do not com-
monly exhibit turbulence, and affect the flow stability as well as
mixing and other transport properties [4,3]. Vortices have been
widely studied with a range of criterion to extract both the surface
as well as the core line, with the most widely used in 3-dimen-
sional studies being the A, criterion [34], the Q criterion [35], the
A criterion [36] which are based on the velocity gradient tensor
or its symmetric and antisymmetric parts [34,37], as well as other
measures such as the helicity [38] and the vorticity magnitude.
Other notions of coherent structures are defined by the finite-time
Lyapunov exponent [39,40] and the closely related Lagrangian
coherent structures [41,42].

In this work we will discuss the computed flow field using the
velocity gradient tensor due to the simplicity, ease of calculation
and detail of insight that can be obtained. The analysis remains lo-
cal however, such that time integrated effects and structures
should be described by particle tracking or other means.

Let us consider a flow field free of singular cases such as shocks
and vortex sheets. A Taylor series can be used to expand the veloc-
ity in terms of the spatial coordinate around an arbitrary point O in
the flow field. This is equivalent to performing a perturbation of
the velocity field with respect to the spatial coordinates.

ui:Xi:Ai-i-A,'ij-‘rA,'ijij-f—'“, 1.7_]',](:1,..‘,3, (1)

where Aj; is the velocity gradient tensor given by

A:AUZ(VH)Z%ZUU, i,j=1,...,3. (2)
OX}‘

Note that the velocity gradient tensor can be written as
A= 3%: = u;j; elsewhere in the literature [43,44].

If the coordinate system is assumed to translate without rota-
tion, with the origin following a passive particle trace, then the ori-
gin is a critical point location. In this frame of reference A; = 0, and
if O is on a no-slip boundary, then also A;; = 0.

Truncating second and higher order terms in Eq. (1) results in a
linear system of ODEs, hence X = A - X, or explicitly

X1 U Uz Uiz X1
X | = un uxpn ux X2 |, (3)
X3 U31 U3z Usz X3

whose solution involves either real or imaginary eigenvalues (4;,
i=1,...,3):

Xi(6) = xi(0)e, x1(t) = x1(0)e"",

X (t) = %(0)e”t,  { x,(t) = e”t[x,(0) cos(/3t) + x3(0) sin(2st)],

x3(t) = x3(0)e’!, x3(t) = e”2![x3(0) cos(/st) — x2(0) sin(Ast)].
4)

These are the local instantaneous streamlines, hence describing
locally the motion of the flow. In unsteady flow, the expansion in
Eq. (1) is applied at a moment in time, such that the solution tra-
jectories correspond to particle paths, which do not generally coin-
cide with streamlines except at an instant. These analytic solution
trajectories have been used in particle tracing for linear tetrahedral
elements [45] and tracing stream-surfaces [46].

For clarity we will order the eigenvalues such that, if they are all
real then A; > 1, > /3, while if the solution comprises of a real and
complex conjugate pair then /, is real and the complex conjugate
pair is given by 1, +i/3. The corresponding unit eigenvectors are
denoted by (4, {5, {3. The eigenvectors indicate the principal direc-
tions of motion of the flow surrounding the critical point, hence
they define the planes in which the solution locally osculates, see
Fig. 2. In the case of three real eigenvalues, the solution trajectories
osculate three distinct planes, while if the solution involves a com-
plex eigenvalue, only one plane exists, given by the eigenvectors of
the complex conjugate eigenvalues. In this case the plane defines
the plane of rotation, while the eigenvector associated to the real
eigenvalue indicates the local axis of swirling. It is important to
note that the eigenvectors need not be orthogonal except in the
case of irrotational flow.

In the case of an incompressible flow, the trace of the velocity
gradient tensor is tr(Vu) = 0u;/0x1 + Ouy/dx; + dus/0x3 =0 =
1+ 22 + A3 (= A1 + 27, if complex). Furthermore the ratio of the
eigenvalues, if real will indicate the level of stretching and com-
pressing of the flow along the eigenvectors, and if complex provide
the spiralling compactness by /,//3, since from Eq. (4) the time per-
iod of one revolution in the spiralling plane is given by 27/i3 [37].

By tracking a passive particle path and plotting the associated
eigenvectors, one can perceive the local dynamics surrounding
the trajectory. In Fig. 2 detail of a passive particle trajectory is
shown in the region of a vortex structure such that there is a real
and complex conjugate pair of eigenvalues. The local osculating
plane and axis of swirling are superposed on the detail of the par-
ticle trajectory.

Given eigenvalues A, 1, 43 of the velocity gradient tensor
A =Vu, the eigenvalue problem [A — A]]{;=0, i=1,...,3, where
{; is the eigenvector associated to /; can be determined solving
the characteristic equation det[A — 4] =0. For a 3 x 3 matrix as
is our case, this can be written as

B+P}+Q4+R=0, i=1,...,3, (5)

where P, Q and R are the variants

P = —(u11 + upy + us3) = —tr(A),

Ui U2 U Uz Uz Uz

B

Uy1 U
U Uiz Uz
R=|uy Uuxp Uy|=—det/A]
Us; U3z Us3

Uszr  Uss U3z  Uss

The surface that divides the real from complex solutions of the
eigenvalues can be shown to be 27R?+(4P> — 18PQ)R +
(4Q% — P2Q?) = 0 [47]. For incompressible flow however P=0 and
the divisory line in the Q — R plane becomes %Rz +Q*=0, as
shown in Fig. 2. In this way the invariants Q and R can be used di-
rectly to describe the flow field.
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Fig. 2. (a) Solution trajectories can be either node-saddle-saddle or focus-stretching, as well as either stable or unstable. The axes are the eigenvectors of the velocity
gradient tensor. (b) Sample trajectory for steady-state computations of patient Case 1 and (c) region detail of trajectory in a vortical structure showing the plane of swirling

and the axis of stretching, given by the eigenvectors of the velocity gradient tensor.

The velocity gradient tensor can be split into a symmetric and
antisymmetric part, corresponding to rate-of-strain and rate-of-
rotation tensors, hence Vu = gu;/0x; = S; + Wy;, i,j=1, ..., 3, where
Sij = (Ou/ox; + Au;[9x;)[2 and Wi = (Ou;/Ox; — du;/9x;)[2. Following
the analysis above, the invariants of S; are Qs and Rs, while the
invariant of Wj; is Qu, noting that P, Ps, Py and Ry, = 0 for an incom-
pressible flow. Physical meaning to these invariants is briefly given
as follows [48]: Q = Qs + Qu is a measure of the rate of rotation over
strain rate; Qs o rate of viscous dissipation of kinetic energy, Qu o<
vorticity intensity, positive Rs is associated with sheet-like struc-
tures, and negative Rs to tube-like structures. These invariants
are widely used in the study of fluid mechanics and turbulence,
see [48] and references therein.

Other measures of describing the flow field are varied, including
vorticity stretching [49] or lumped vorticity rings [43]. Since the
circulation is constant for a closed curve group of fluid elements
in the absence of rotational external forces, from Kelvin’s law, a
corollary from Helmholtz second law, and also from Helmholtz
first law stating that the strength of a vortex filament is constant
along its length then, tracking the lumped vorticity ring over lim-
ited distances (before large distortions occur) will allow for a qual-
itative representation of the flow dynamics with respect to the
vortex structure. As stated in [43] the tracking of this lumped vor-
tex ring (or set of rings) of iso-vorticity at the inlet allows for a
clear identification of rapid stretching and hence the behaviour
of the vorticity and the vortex structures.

It should be noted that in the case of linear tetrahedral ele-
ments, the velocity gradient tensor is constant over the element,
and facilitates the post-processing considerably. It is in fact this
property that is often used in extracting the vortex cores. A number
of methods exist in extracting the vortex cores, however the most
popular are based on the reduced velocity in the element [50,51]
and the higher order method approach [52]. Here we introduce a
further method that is less computationally expensive and is based
once again on the velocity gradient tensor [25,46]. In [25], the set
of possible solutions of the eigenvalues for a linear tetrahedral ele-
ment is presented, with a corresponding discussion of existence of
a unique critical point and degenerate cases. In the case of a swirl-
ing flow such that the dynamics involves an osculating plane and
an axis of rotation, the eigenvalues of the velocity gradient tensor
are 21, /p +i23. Two solutions are admissible, 1; =0, A, +il3, 213 # 0
for which no unique critical point exists and the motion is circular
around the axis, and 1; # 0, /4, til3, 43 # 0 in which the motion is
spiralling about the axis and a critical point does exist. The identi-
fication of the vortex core relies on noting if the axis of rotation

passes through the tetrahedron element under consideration,
which can readily be performed based on barycentric coordinates
or intersection with the tetrahedral’s four planar triangle faces.
The result is a set of points (at least one per tetrahedron) that
can be connected based on the existence of a point in a neighbour-
ing tetrahedron element, though this has not been performed in
the current work. This method is sensitive to noisy data (since
the gradients of velocity are obtained from a piecewise linear field)
and certain spurious disconnected points can be obtained.

4.2. Invariants of the wall shear stress gradient tensor

A similar analysis can be performed using the wall shear stress
on the walls of the domain instead of the velocity field [53]. This is
performed by firstly projecting the wall shear stress onto two
orthogonal directions (hence local 2-dimensional coordinates) for
each triangle mesh element that defines the bounding geometry.
Considering now this projected wall shear stress field for each ele-
ment, a similar Taylor expansion as in Eq. (3), truncated to include
only the first term, can be used to obtain a set of two first-order
ODEs. Since the triangle elements are piecewise-linear and hence
planar, the analysis is essentially 2-dimensional. The critical point
analysis can be then performed and a full description of the per-
missible sets of eigenvalues for a 2-dimensional case of a linearly
varying field is also discussed in [25]. The critical points can be
either foci or saddle configurations, where the foci can have two
real eigenvalues or a complex conjugate pair.

In doing so the near-wall flow parallel to the wall can be de-
scribed concisely and elegantly. For critical points with a real set
of eigenvalues, a point a small distance along the eigenvectors
can also be plotted in order to identify the principal directions of
the motion visually. These points can be used as seeding locations
for integration of the wall shear stress on the surface to obtain sur-
face shear lines (sometimes termed ‘limiting streamlines’, ‘surface
streamlines’ or ‘skin-friction lines’ elsewhere in the literature),
hence the lines that are aligned to the tangential component of
the viscous traction exerted by the flow on the wall. This leads to
a minimal set of surface shear lines (since they must start and
end at a critical point, principal directions bound a region, and
the lines cannot cross each other) that describe the tangential com-
ponents of the flow near the wall, and are important in identifying
features such as regions of flow separation and impingement.

It should be noted that this wall shear stress critical points anal-
ysis in the 2-dimensional case on the wall is a simpler approach to
discuss the 3-dimensional flow field close to the wall. For example
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a complex conjugate pair of eigenvalues identifies where a vortex
structure is rooted at the wall, a set of real positive eigenvalues
indicates a point of flow impingement (and point flow separation
if both negative, though this is in practice not common) and a sad-
dle configuration (one positive and one negative real eigenvalues)
often indicates a point on a line of flow separation. Examples of
separation schematics can be found in [54-57]. Fig. 3 shows detail
of steady-state simulations of Case 1 at the distal region of the
aneurysm neck. Critical points of the wall shear stress are identi-
fied and surface shear lines are plotted, which together map clearly
the near-wall fluid dynamics tangential to the wall.

4.3. Near-wall convective transport

The above discussion has looked at describing the free-slip flow
field and the tangential component of the flow field near the wall.
In this section we discuss the near-wall transport perpendicular to
the wall, that is of importance in physiological flows from the
stand point of exchange processes and interactions between flow
and wall. The near-wall convective transport normal to the wall
discussed here describes how the flow moves from or returns to
the surface gradually. The method follows the work of [26], in
which the values of low WSS and transport to the wall were corre-
lated to inwards vascular remodelling for two post-operative
peripheral bypass grafts.

For gradual convective transport normal to the wall, a measure
of the strength is given by the surface shear line convergence (or
separation) [56]. This observation was first explained in [57,58]
by considering Fig. 4 as follows: let the flow be steady and incom-
pressible, then mass flux is constant and is given by m = pabu,
where u is the mean velocity of the cross section. Considering
the cross section to be small such that the wall shear stress magni-
tude is given by 7, = (&), where u is the dynamic viscosity, and
substituting we obtain:

. a’bt,p
m = constant = T (7)

Rewriting this we find that a < (bt,,) '/?; hence for a constant
wall shear stress magnitude, the convective transport normal to
the wall is inversely proportional to the root of the distance be-
tween the surface shear lines. The coalescence or separation of

Streamlines, obtained
by integrating the velocity

Surface shear lines,
obtained by integrating
the wall shear stress

Fig. 4. Surface shear lines, obtained by integrating the traction force components
on the wall, coalesce (or diverge) and due to continuity the fluid moves away (or
towards) the wall gradually, such that a « (bt,) ', from Eq. (7), where 1, is the
wall shear stress magnitude.

the surface shear lines can therefore be an indication of flow mov-
ing from or returning to the surface. This approach is difficult to
use quantitatively in practice as it requires information of relative
position of traced points along the surface shear lines.

A different approach to describe the near-wall convective trans-
port is derived by considering a series expansion of Lagrangian
dynamics of a fluid. The approach used follows closely that of
[26] and is presented in terms of the wall shear stress gradients.
Near-wall residence times and convective transport parallel to
the wall are also linked to the wall shear stress. A brief derivation
is now given.

Imagine a flow with velocity u(x,t) = (u(x,t), «(X,t), w(X,t)) over
a wall and let (i,j, k) denote the unit vectors in the (x,y,z) directions
respectively. Let us consider a point on the wall with position vec-
tor Xq, = (0,0,0) and select a particle at time t = to released from an
initial position Xq = (dx, dy, 6z), then after a short time Jt the separa-
tion of the particle from its initial position can be expressed by a
Taylor series expansion in time, given by

Fig. 3. Detail of distal aneurysm neck region of steady-state computations for Case 1. The images show surface shear lines and WSS critical points, which are coloured such
that green indicates a complex conjugate pair solution (spiralling motion), blue indicates real solutions and red are locations a small distance along the eigenvectors (hence
principal directions. (a) Passive particle streamlines in the fluid domain indicate flow separation (red) and vortex cores touching the wall (blue) which are also identified by
the WSS critical points. (b) Plot of TR (Pa m~!) as the convective transport normal where positive values indicate flow movement to the wall and negative is movement away
from the wall. The region of flow separation is marked as strong movement away from the wall for example. (c) Plot of WSS (Pa) and describes the convective transport
parallel to the wall. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Steady-state computations for Case 1 (top) and Case 2 (bottom). (a) Streamlines and vortex core points coloured by the magnitude of the complex eigenvalue (/3) of
the velocity gradient tensor, hence the rate swirling. (b) Vortex core points and iso-surfaces of /, = —10* for vortex identification [34]. Plots of surface shear lines and WSS
critical points (same colouring scheme as in Fig. 3) and (c) plot of WSS (Pa), (d) TR (Pa m™ 1), (e) vortex core points. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 6. Top row: cardiac cycle at the inflow section and the three locations for which the results are presented. Plots of surface shear lines and WSS critical points (same
colouring scheme as in Fig. 3) and (a) vortex core points, (b) TR (Pa m~'), (c) WSS (Pa). (For interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)
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To simplify the expansion further we now consider the wall to
be in the x — y plane such that the surface normal is the z direction.
The velocity at a point near the wall X = Xy, + 6X can be expanded
using a Taylor series expansion in space. Remembering that the
velocity components at the wall are zero, the spatial gradients in
the plane of the wall are zero, from continuity ou/ox + v/
dy + ow/dz = 0, and hence also dw[dz = 0, then we obtain

ou 1 ou
oo (s(3)_ ()| )
Xow:lo Xow.to
(. (v 1.,[(0% (1, (0*w
><l<()2<&) » -s—z()z (W) )](Ebz 2z
w0

Making one final substitution by rewriting the velocity deriva-
tives for a Newtonian flow in terms of the wall shear stress
components

2,@) : ﬂ%%)
oo\ gy B \OZ

we can then expand X(to + 5t) — X(to) from Eq. (8) in its terms of the
Taylor series expansion up to second order terms, distinguishing the
components in the direction parallel and normal to the wall

X(to + 5t) — X(to) =

Xow-to

(10)

Xowlo

(11)

Xow:lo

oo ()i G
oer-azty: (6 ()~ (e + )k
Ot -22): 2 (i (32)i). (12)
oer-a): (G )i
S 1CE SR A )]

P Py
+ 2u (()xd[ + yor dyot L(

From this the dominant component parallel and normal to the
wall are time independent and given by

(X(to + dt) — X(to))i = (0t - 92) (Tp)
(X(to +08) = X(£o))j = (0t - 62) (), (13)
(X(to + 0t) — X(to) )k = — 5 (ot - 62°) (f% + %)

Eq. (13) states that the steady-state near-wall convective transport
parallel to the wall is proportional to the tangential wall shear
stress components, while the transport normal to the wall is pro-
portional to the spatial gradients of wall shear stress in the plane
of the wall. Together, the directional components give an indication
of the local near-wall residence times.

Studies on flow-mediated mechanotransduction suggest that
sensed haemodynamic stresses generate signals and responses
from a biochemical perspective, indicating an adaptive auto-regu-
lation to local factors [18,19,59,60,11]. The sensory mechanisms
are usually attributed to the endothelial cells typically concerning
changes in the flow or abnormal flow patterns, discussed com-
monly in terms of wall shear stress and derived parameters (such
as WSS spatial and temporal gradients), which can stimulate pro-
liferation, permeability and migration. Sensory mechanisms for
the endothelial cells to feel these alteration in the wall shear stress
and the spatial gradients of wall shear stress have long been
sought, however from Eq. (13) these are easily identified physically
from the components of the near-wall velocity: the tangential
component is related to shear while the vertical to a change in
momentum. A greater number of parameters are feasibly detect-

able by the endothelial cells (even if currently the mechanisms
and pathways may still be unknown), such as the temporal gradi-
ents of wall shear stress, and importantly these can be related to
near-wall transport mechanics from Eq. (12).

In the results discussed below, the strength of the near-wall
convective transport normal to the wall is identified by the
quantity
0T, 0T;

52 , (14)

TR =
9 9G

where 7, /u=1-V(u-§) and 1., /u=1i-V(u-&), with & and &
as the perpendicular unit tangent vectors and 7i as the unit normal
vector to the individual triangular surface elements. In this way the
triangular faces are considered individually to calculate the WSS
gradients as a post-processing step, and an average at the element
vertices is then performed considering all adjacent elements since
the spatial gradients will be discontinuous across the elements. In
this work the convention of negative values of TR indicates convec-
tive transport from the wall, and positive values indicate transport
to the wall. The results of TR can be used in conjunction to the sur-
face shear lines coalescence or separation for easy of interpretation
if required, however this is valid in regions of relatively constant
wall shear stress. Example of the use of TR is shown in Fig. 3, in
which region of flow separation at the distal region of the aneurysm
neck is identifiable easily, as well as other flow features.

An important feature of this analysis is that, using derivatives of
the fluid mechanic properties on the wall and relating them to the
transport, near-wall free-slip flow field can be approximated by
integrating the derivatives, and examples of this are shown in [26].

5. Results

Applying the above methods to the steady-state simulations for
both patient Cases and the time-periodic simulation of patient
Case 1, the free-slip and no-sip regions are now analysed. We first
present the steady-state solutions using the methods discussed
above to describe the key flow features in the free-slip domain
and importantly how these are related to the no-slip domain.
The results of these steady-state simulations are shown in Fig. 5
for both Cases and those of the unsteady simulations are shown
in Fig. 6. The vortex core points appear unaligned and some single
dispersed points are identified in the flow field erroneously; this
has been identified to be due to the interpolation of cell-centered
data obtained from the finite volume computations onto a node-
centered data used in the analysis, and from the numerical accu-
racy of the computational result from which the post-processing
of derivatives leads to additional errors.

Two important points are first addressed from the results of
Fig. 5: firstly the use of streamlines to describe the flow field, as
discussed in [16] with relation to correlation to aneurysm rupture,
can be rather difficult to discern and classify and a less cluttering
approach is needed; secondly the 1, criterion for vortex structure
identification does not align in fact to the vortex cores. This second
point can lead to misleading conclusions about the flow structures,
the reason for this is due to the viscous terms in the Navier-Stokes
equations, and discussed in greater detail in [36], such that a pres-
sure minimum in the plane (which is the basis of the /, criterion
[34,43]) may not be appropriate.

The surface shear lines and the critical points of the WSS, in
conjunction to plots of the WSS and TR, can be used to describe
the no-slip domain entirely. The critical points of the WSS act as
dividing lines to the surface shear lines, bounding these to com-
mon regions. The critical points furthermore identify locations of
flow separation and impingement, and the type, i.e. if a vortex is
rooted at the wall or a simpler arrangement is present. The WSS
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and TR locally identify the velocity of the fluid near the wall, in the
tangential and normal directions. In this way a complete descrip-
tion of the no-slip domain is presented in a concise and physically
intuitive form. The vortex core points, on the other hand, act as
skeletonisations of the free-slip domain by identifying the axes of
rotation (not always part of a vortex therefore), as well as other
measures such as the rate of stretching, spiralling intensity and lo-
cal osculating planes, if desired. The strongest vortex cores, that
leave the aneurysm through the side branch or the main arterial
vessel, appear to be anchored to the vessel wall, as seen from the
critical points of the WSS. It is further possible to identify from
the values of TR and the critical points of WSS the effect of the
swirling motion in the flow field around the vortex cores; for
example in the case of a vortex lying adjacent to the wall a net divi-
sion of sign of TR is observed, while the surface shear lines would
be at an angle to this division.

In Fig. 6 snapshots of the solution at three time intervals are
presented. The interest is to identify clearly and easily the charac-
teristics of the flow field. An interesting result that emerges is the
relative constancy of TR during the cycle, while the WSS is seen to
vary more noticeably. A further distinguishing feature is the persis-
tence of the vortex core anchored to the proximal portion of the
aneurysm dome (identified easily from the WSS critical points)
and continues to the distal parent artery. During diastole the flow
field in the aneurysm becomes more complex due to the fluid
deceleration, as seen by an increased number of WSS critical points
and vortex cores, however by the end of the diastolic phase (at the
end of the heartbeat) the flow field has again become relatively
simplified. A more in-depth analysis of the time snapshots will
be interesting to identify the change in the WSS critical points
and the vortex cores, the behaviour and stability of which may lead
to correlation and classification of aneurysm rupture or growth
directions.

6. Conclusion and future work

The local dynamics for both the free-slip and near-wall flow re-
gions can be studied using the Taylor series expansion of the veloc-
ity, wall shear stress or relative position. This leads to a detailed
local information of the flow field that can aid the discussion of
fluid dynamic phenomena concisely. The use of these methods
has been shown to provide a clear and in-depth description of
the flow in two patient-specific geometries of saccular cerebral
aneurysms. The description is similar to other works involving vor-
tex stability during the cardiac cycle, wall shear stress magnitude
and impingement size areas, however the approaches of extracting
these results provided in this work have the advantage of being
simple to calculate, provide a clear physical basis to the measures,
are robust and avoid a large amount of clutter in the analysis that is
otherwise inevitable.

The unsteady simulations and use of the above described meth-
ods, have identified that the WSS critical points (hence also the
surface shear lines) alter noticeably during the cardiac cycle, how-
ever the transport normal to the wall and the dominant vortex core
remain largely unaltered. The deceleration phase of the cardiac cy-
cle causes a larger number of smaller vortices to be formed in the
aneurysm. The region of flow separation at the aneurysm neck is
not seen at the peak systole. Other flow features that can concisely
describe the flow have also been discussed.

An important physical analysis of the WSS spatial and temporal
gradients from Eq. (12) sheds light on widely used fluid dynamic
parameters correlated to disease. These are related to the near-wall
transport, and this physical interpretation can be linked to possible
sensory mechanisms of the endothelial cells, and hence mechano-
transduction and related biochemical signalling.

The analysis has been performed on cerebral aneurysms and
can foreseeably be extended to study a greater number of geome-
tries and applications to provide a more learned understanding of
human physiology in normal and diseased states. Future work
would primarily be use of a larger number of data sets in order ex-
tract correlations and statistical measures related to aneurysm
growth and rupture.
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